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TOLLMIEN-SCHLICHTING/VORTEX INTERACTIONS IN
COMPRESSIBLE BOUNDARY LAYER FLOWS

Nicholas D. Blackaby'

Department of Mathematics
University of Manchester
Manchester, M13 9PL
United Kingdom

ABSTRACT

The weakly nonlinear interaction of oblique Tollmien—Schlichting waves and longitudinal
vortices in compressible, high Reynolds number, boundary-layer flow over a flat plate is con-
sidered for all ranges of the Mach number. The interaction equations comprise of equations
for the vortex which is indirectly forced by the waves via a boundary condition, whereas
a vortex term appears in the amplitude equation for the wave pressure. The downstream
solution properties of interaction equations are found to depend on the sign of an interaction
coefficient. Compressibility is found to have a significant effect on the interaction properties;
principally through its impact on the waves and their governing mechanism, the triple-deck
structure. It is found that, in general, the flow quantities will grow slowly with increasing
downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt, finite-distance

‘break-ups’.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-10480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
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1. INTRODUCTION

The nonlinear interaction between two oblique three-dimensional Tollmien—Séhlichting
(TS) waves and their induced streamwise (longitudinal)-vortex flow is considered theoret-
ically for a compressible boundary-layer flow; this study is an extension of the paper by
Hall & Smith (1989) who considered an incompressible boundary-layer flow. The same
theory applies to destabilisation of an incident vortex motion by sub-harmonic TS waves,
followed by interaction. The interaction is considered for all ranges of the Mach number
in order to investigate the effect of flow—compressibility.

The motivation for such a study is essentially the same as expressed by Hall & Smith
in the introduction to their paper; namely that often in experimental studies of laminar-
to—turbulent transition on a flat plate (eg. Aihara & Koyama, 1981; Aihara et al, 1985),
there appear to be longitudinal vortices co-existing, and interacting, with the viscous TS
modes. As there is no concave curvature of the surface, these longitudinal vortices are
not Taylor-Gortler vortices driven by surface—curvature (see Hall, 1982a,b and subsequent
studies); instead one could postulate that they are in fact being driven by, and/or inter-
acting with TS modes. The reader is referred to the paper by Hall & Smith (1989) for a
fuller account of relevant experimenta«l findings, as well as supporting computational work
(see, for example, Spalart & Yang, 1986). These experimental studies are all for incom-
pressible flow; the author is unaware of any experimental work specifically relevant to this
compressible study. We note in passing that, for compressible flow over a heated plate,
buoyancy-driven longitudinal vortices may also be possible (see Hall & Morris, 1992).

Recently, the origin of streamwise vortices in a turbulent boundary layer has been
investigated theoretically by Jang et al (1986). The Reynolds number is taken to be
finite and their formulation is of the Orr-Sommerfeld-type. They show that two oblique
travelling waves can combine nonlinearly to produce a stationary, streamwise vortex —
this is essentially the theoretical idea later used by Hall & Smith in their independent work.
However the latter’s approach, that adopted in this paper, takes advantage of the feature
that the Reynolds numbers of interest in reality are large and so the Reynolds number

is taken as a large parameter throughout. The nonlinear interaction is powerful, starting



at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale
structure for the induced vortex, after which strong nonlinear amplification can occur.
Non-parallelism 1s accommodated within the scales involved.

The nonlinear interaction is governed by a partial-differential system for the vortex
flow coupled with an ordinary-differential equation for the TS-waves’ pressure. The solu-
tién of this coupled systelh depen&s cru(;.ially upon so—called interaction coefficients which
are functions of the Mach number; additionally, the TS waves are significantly affected by
the inclusion of icompressibilrity. It is found that the interaction coefficients, for subsonic
flow, do not differ significantly in nature from the incompressible ones, but as the flow
becomes supersonic the restriction (for high Reynolds numbers) that the TS waves must
be directed outside the local Mach-wave cone (Ryzhov, 1984; Zhuk & Ryzhov, 1981) ex-
cludes a particular flow solution which is only possible for less oblique modes. The flow
properties point to the second stragejs;(i)if interaction associated with higher amplitudes.

It is found that the present formulation breaks down as the Mach number becomes
large: for then, even when the presence of shock/boundary layer interaction is neglected,
the viscous sublayers coalesce to form a single boundary-layer. The structure applicable
in this hypersonic limit has been considered by Smith (1989) and Blackaby (1991).

The theoretical idea is basically that, if two low—amplitude TS waves are present,
proportional to Ey ; = exp[i{aX gZ —f)] say; then nonlinear inertial effects produce the
combination E; E;! = exp[if],= Ej say, at second order, among other contributions, i.e.
a standing-wave or longitudinal—vortex flow is induced. Here a, 8 and § are real-valued
scaled wavenumbers and frequency, whilst X, Z and t are scaled length— and time-scales
(see later). Equally, the combination of the vortex and one TS wave provokes the other
TS wave.

Since the Reynolds number is assumed to be large, the TS waves are supported by the
triple-deck structure (Smith, 1979,89); however an extra sub-boundary layer and a further
streamwise length—scale are necessary to capture their interaction with the longitudinal
vortices. The present vortex/wave interaction mechanism is very similar to that of Hall
& Smith (1989); the difference is caused by an error in the latter, uncovered by Smith
& Blennerhassett (1992). The amended interaction still has the induced vortices lying

o
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at the top of the lower deck but now the forcing from the TS waves is solely from an
inner boundary condition. The wall-shear of the induced vortices modifies the wall-shear
of the basic flow at the same order as the latter’s leading-order nonparallel correction.
These corrections to the wall shear force secondary TS waves in the lower—deck, whilst the
amplitude of the primary TS waves here is governed by an amplitude equation involving
these corrections to the wall shear. The behaviour of the primary TS quantities at the
" top of the lower deck then leads to longitudinal-vortex activity being forced there. Thus
the system is truly interactive: the longitudinal vortices are driven by the TS waves, the
amplitude of which is determined by an amplitude equation involving a vortex—term.

We consider the interaction for the case of compressible laminar flow over a semi-
infinite plate. In the next section the underlying boundary-layer flow is outlined and
the triple-deck structure, for such compressible flows, is reviewed. In §3 the interaction
equations are derived, and a few special limiting cases of these equations are considered.

In §4 numerical results are reported and in the last section some conclusions are drawn.
2. FORMULATION

We consider the boundary layer due to high-speed uniform flow of a compressible
over a flat plate. Suppose that L is the distance from the leading edge, and u},, al,, p%
and p , are the velocity, speed of sound, density and shear viscosity of the free stream
flow, then we assume that the Reynolds number, Re = p% u% L/u% , is large. This is not
unreasonable as one is already assuming the presence of a boundary layer. The second
important parameter is the Mach number, My, = u},/ak,, which we take to be O(1) for
the time being.

A nondimensionalisation based on coordinates Lz (where z is in the direction of flow
and y is normal to plate), velocities u* u, time Lt/u%_, pressure pX uXlp, density p% p,
temperature T} T and shear viscosity p% p is adopted, where the subscript co denotes the
value of the quantity in the free-stream. We assume that the fluid’s viscosity and tem-

perature are related by Sutherland’s formula. Full details of the Navier-Stokes equations

equations for compressible flow; the resulting boundary-layer equations and associated



similarity solutions can be found in several books and articles (eg. Stewartson, 1964).
Note that only the ‘wall-values’ of the steady boundary-layer flow solution occur within
scales considered in this paper; however, these quantities depend on the choice of viscosity—
temperature relation as well as other factors such as whether the plate 1s cooled and the

nature of the external pressure gradient.
2.1 The 3-D compressible triple-deck equations.

The underlying structure, of the vortex—wave interaction to be considered later, is that
of the three-dimensional, compressible Tollmien—Schlichting (TS) waves at large values
of the Reynolds number, namely the three-dimensional ‘compressible triple-deck’. This
structure has been studied by, in particular, Zhuk & Ryzhov (1981), Ryzhov (1984) and
Smith (1989); the two-dimensional, compresglble triple-deck theory was first considered
by Stewartson & Williams (1969). Recently, Cowley & Hall (1990) and Duck & Hall (1990)
have shown that the theory can be adapted to include the effects of a shock for flow over
a wedge, and cylindrical geometry, respectively; whilst Seddougui, Bowles & Smith (1991)
have considered the effects of wall-cooling. For definiteness, we assume that the flow is
supersonw (Mo > 1) during the formulation of the interaction equations; the subsonic
and other cases follow very similarly and in §4 results are also presented for these cases.

In the following scalings, the Reynolds number is assumed to be large whilst the other
factors are taken be be 0(1). The latter are introduced to normalise the rgsu-lting governing
equations as far as possible; however, the Mach number still remains in the upper—deck’s
pressure—disturbancé equation and hence it appears in the TS-eigenrelation.

The streamwise, spanwise length-scales and the time-scale, for M > 1, are
3 1 =3 1 3 .
(r—z0,2—2z)=Re 8K (X ,Z), t= Re™TAy2puy? TE (M2 — 1)*it,
_5 __‘1 | 7 3
K1 = Awipot TS (M2 - 1)78; (2.1a —¢)

here (9, zo) corresponds to the location of the initial disturbance of the laminar base-flow.
In the viscous sublayer, or lower deck,

1

= R~ dudTiz, — 1)ty



1 1 -3
(u,v,w) = Re-WAddnioe )b, R iTE YV, W,

and

I bt -1
P—DPoo = Re™ 4G T (M5, — 1)74P (2.2(1—-6)
The resulting lower deck equations are

Ux+W+Wz=0,

U; +UUx + VUy + WUz = —Px + Uyy,
W; +UWx + VWy + WWz = —Pz + Wyy,
Py =0, (2.3a — d)
to be solved subject to
U=V=W=0, on Y=0, U—(Y+AXZ1{), as Y -oo00 (23e-f)
The main deck has
y= Re"fué Tu% 7, (2.4)

and merely transmits the small displacement effect, A, across the boundary layer as well
as smoothing out an induced spanwise velocity. The displacement, A, is related to the
pressure, P, via a pressure-displacement law stemming from matching solutions across the
three decks (see Smith, 1989).

The upper deck occurs where
— P13 2 -}
y = Re 3Ky (MZ%, — 1)1 (2.5)
note that the Mach number can be scaled out of all but the upper deck equations.
2.2 Linear Tollmien—Schlichting modes.

The eigenrelation, for linear supersonic TS-modes, is easily derived using the triple—
deck scales and equations discussed in the previous subsection. It can be written in the
form

N (2 2 (A p? 213
(1a)3 (a +T)—(Al /K)(€0){m—a 17, (2.6a)
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where A: signifies the Airy function,

n':/ Ai(q)dgq and fo=—‘i%9/a%. (2.6b,¢)
§

0

Here a, 3/2 and (1 are the scaled wavenumbers and frequency of the mode. The vortex—
wave interaction to be described concerns only neutral modes, so «, 5 and Q are all real.

In Figure 1 weipresent the ‘neutral’ solutic;ns rof the eigenrelation (2.6a), and its
subsonic counterpart, for a few (illiistrative) choices of the Mach number M. Here (and

hereinafter) the ‘wave [obliqueness] angle’ is defined by
0 <6 =tan"'(4/2a) < 90°. (2.7a)

We see for subsonic values of the Mach number (M, < 1) that neutral modes are possible
~ for all wave-angles. However, fqrrixili{::rgasingi supersonic Mach number values (Mo > 1)
the solution Wproperties start to diffe;‘ lié)ticeably, with only an e;/;er decreasing range of very
oblique TS-wave propagation angles, 8, being possible. Thus the restriction (2.7a), which

can be re-written

6 > tan~! [(Mgo - 1)%] , (2.7b)

is clearly evident in this figure. We shall see later, once the interaction has been formulated
and numerical values have been calculated for the important interaction coeflicients, that
this restriction proves to be a more significant ‘compressibility—effect’ on the interaction
than the ‘direct’ effect due to the Mach number appearing in the interaction coefficients.

Smith (1989) gives a comprehensive account of the consequences of the eigenrelation
(2.6a) on the stability of the flow to linear TS-modes (note the factor of 2 difference between
the definition of § here and that used by Smith, 1989 and Blackaby, 1991) Our concern
in this paper is with a vortex—wave interaction based on these length- and time-scales. In
the next subsection we deduce the size of additional z- and y- scales necessary to capture

this interaction.
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2.3 The interaction scales.

In deriving the interaction scales, the same argument as Hall & Smith (1989) is fol-
lowed but based on the compressible triple-deck scales quoted in §2.1. However, we take
the coupled lower— and upper—deck equations as our starting point, rather than returning
to the compressible Navier-Stokes equations; this approach appears simpler.

We know that TS-waves are governed by the triple-deck structure, and in particular
by the unsteady interactive boundary-layer equations holding in the lower—deck coupled
with the upper—deck equations via a pressure-displacement law. If the three-dimensional
(3D) TS—wave amplitudes are comparatively small, say of order h < 1 relative to fully
nonlinear sizes, then nonlinear inertial effects force a vortex motion at relative order hZ;

the TS-modes are taken to be proportional to
E, = exp[i(aX + —g—Z —Qf)], E; =exp[i(aX — gZ — Qi) (2.8a,D)

and we see that combinations yield, in particular, induced longitudinal-vortex terms pro-

portional to

E; = exp[i(82)], (2.8¢)

having only spanwise dependence.

It can be easily shown that spanwise inertial effects (such as the ‘UWx’ term of the z—
momentum equation) decay slowly like 1/Y? resulting in the spanwise velocity component
of the induced vortex to grow logarithmically like InY (Hall & Smith, 1984,89). Hall
& Smith (1989) introduced the concept of a new sub-layer (‘the buffer layer’) situated
within, and at the top of, the lower—deck, along with a longer length-scale (for amplitude
modulation) to dampen down this logarithmic growth. They showed that the main vortex
activity was confined to this region.

Before deriving sizes for the modulation length-scale and the thickness of the buffer-
layer, we briefly mention the link between the z—scales present and nonparallel effects. The
triple-deck is a local structure located at nondimensionalised distance r = x¢ from the
leading edge. It is short, its length being O(Re_%Kl) compared to the O(1) development

of the underlying boundary layer, and all the X —dependence of the TS—modes is taken to
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be in the E; and E; factors. The modulation of the modes i1s assumed to be on a longer
z—scale, leaving the eigenrelation (2.6a) unaffected. We define this modulation z—scale,

X say, by
z—20=86X + R 3K\ X, R IK, <8 <1, (2.9a)

where §; 1s to be determined. Thus we have multiple-scales in z; formally we should make

the replacement

o _ 0 +Re-%1(1'a
ax ~o9X = & IX

(2.95)

in the triple-deck equations (2.3).

At leading order the wall shear Aw = /\w(x) is constant (with respect to the X — and
X — scales) but here we wish to balance the next order term into the interaction equations;
in fact, for later convenience we have scaled the leading order value, A, (z), out of the

triple-deck equations. As a Taylor expansion about the local station z = zo,
Au(@) = Au(zo)(1+ & X Nu(20) + ) )

here Ay = AZ'dA, /dz is O(1) and represents the first influence of nonparallelism (stream-
wise boundary-layer growth).
In the buffer layer, where Y = Y say (8§ > 1), the size of the spanwise velocity

of the induced vortex in the buffer layer is O(h?InY), ~ h?Iné, leading to an induced

52 Reg

-

1

streamwise velocity of order h%1né, by continuity (and noting that the modulation

3
. < . . . 62Re8 h?
is on X), which alters the basic shear A, by a relative amount of order 27_;5_ Iné and
1
this is the same order as the ‘non-parallel’ Aj—term if
.3
. §,Re® h?

) e —6—1116 . (2.11a)

The X —modulation has been introduced to damp the induced-vortex velocity components
in the buffer layer, and this requires the inertial operator, Y3/0X, to balance the viscous

one, 9%/3Y?, i.e.
52R6%
K,

8 ~

(2.11b)

[T 2T T TN R and (T AT



One further relation (between the unknowns h, & and é;) is required and results
from balancing the slower X-modulation with the nonparallel effects too (i.e. in the z—

momentum equation, balancing the Ay term with Pyx), yielding

fes

6y = Re"TS K, T . (2.11¢)

|
)

The other two sizes now follow immediately from (2.11a-c):
]
6~ ReTlT)'Kl_?lf and h ~ (Re—%%f(lg/lnc?)i . (2.11d,¢)

The logarithmic factor in (2.11a,e) is important (Smith & Blennerhassett, 1992); it is
wrong to dismiss it like Hall & Smith (1989). We note that § is large, whilst h and é; are

small, as required.
3. THE INTERACTION EQUATIONS

The method of deriving the interaction equations is identical to that used by Hall &
Smith (1989); essentially, it involves a standard weakly-nonlinear triple-deck analysis but
slightly complicated due to (i) the wall shear being weakly z-dependent, and (ii), the extra
(buffer) layer. Thus here we present only the briefest outline of the derivation; our main

concern in this paper being the effect of compressibility on their solution properties. Fuller

details can be found in Blackaby (1991) (see also Hall & Smith, 1984,89; and Smith, 1989).
3.1 The equations and their derivation.

The interaction equations comprise of a set of equations for the vortex-terms in the
buffer-layer coupled with an equation for the TS—wave pressures resulting from matching
the solutions for the waves between the lower-deck and the upper—deck. The vortex
equations are forced by the wave via a boundary condition whereas a vortex term explicitly
enters the wave—equation.

In the buffer-layer, the vortex terms, a33()'(,ff), 1333()2,17') and 11333()2',?), have the

following sizes relative to the lower—deck scales (2.2)

(U, V,W)vortex = h2In6 (Re¥ 633/ Ky, 633, 33)Es + c.c.; (3.1)
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here the notation of Hall & Smith (1989) has been adhered to and c.c. denotes complex
conjugate. These scales, together with the wall-shear term §Y in the U-expansion, lead

to the vortex equations

Uyyvyy — Ylgyxy = —tPWss,
A = -~ N
Wyyyy —Yibgyg =0, (3.2a,b)

which must be solved subject to the boundary conditions:

ﬁ)gg(f, 0©) = ’&337(3(_, ) = 12337?(7, 0)=0 and 12133()_(,0) = —ifK|pnl*%
(3.2¢— f)

here,

K =1-(8%/4a?) (3.3)

and py; is the amplitude of the TS—waves which we choose to be of equal amplitude. Thus,
we see that the vortex equations are only forced by the TS—waves via a boundary-condition
which matches the solution in the buffer layer with that found in the lower—deck.

The desired equation for the pressure amplitude |1, ] of the primary TS-waves can be
derived by sblving the triple—deck equations for the primary and some forced TS-waves;

after some manipulation we find that it takes the form
a |11 (X)lx + b A X511 (X)) + ¢ by, 7(X, 0)|p11 (X)] = 0. (3.4)

This equation was first derived by Hall & Smith (1989); however, here the so-called com-
patibility coefficients a,b and c¢ are functions of the Mach number. The presence of M,
in these coefficients is one of the reasons for the solution properties for compressible flow

differing from those for the incompressible case. In fact, the for supersonic case

]
g TD&AT? py[2B B 1 2nyDbaA™ 5B
3a v 3a? 3 3o
. o [ 2r 2 e 5B 33%B
~and c=1iD&AT? (%—!—ﬂ;?) —a 'B 4 (?— i7 ), (3.5a — ¢)
where
Ai(£o) k(&) €or (o) 2, P
= ] ] 2 = . b D=1 + ] ) =a” + R
T A () T i) A7(&) 4
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B:dfﬁ—oﬂ and Az(ia)i'. (3.6a — f)

The coefficients for other flows can be derived very similarly and, in fact, numerical
results for the subsonic and incompressible cases are presented in the next section. An
alternative, less physically motivated, derivation of the interaction coefficients is outlined
by Blackaby (1991) who considers a generalised TS eigenrelation. The quantitative values
of these coefficients, and their resulting effect on the interaction properties are considered

later. The (normalised) interaction coefficients
-¢1r = Real(b/a) and c;, = Real(c/a), (3.7a,b)

are crucial to the solution properties; especially the large-X behaviour.

It is possible to derive a nonlinear ‘integro-differential’ equation,

d|p11] -~
— FApX
% + (Cl pX +

carBPK AT (0) X

T (%) 400) Jo |1511|2(¢)(—X - ¢)_7d¢) Ip11] =0, (3.8)

for the pressure amplitude |p1;| from the previous equations. A similar equation has been

found by Smith & Walton (1989), in their study of vortex-wave interactions.
3.2 Possible limiting forms for large—X.

Let us consider analytically the possible flow solutions for large-X. Hall & Smith
(1989) found four such options for their system of equations; however, the necessary
amendments to their work render one of these options is no longer feasible, namely that
of exponential growth. Moreover, there is a swap in the signature required for the cru-
cial quantity Keg, for the finite-distance-blow-up and the algebraic-growth-to-infinity
eventualities to be possible. Thus, the conclusions, drawn later, for the case of zero Mach
number are quite different from those found in Hall & Smith (1989). In §4, numerical
solutions of the interaction equations will be presented and compared with the large-X

asymptotic predictions that follow.
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(i) Option I: Finite-distance break-up.

Hall & Smith (1989) showed that a possible, ultimate behaviour of the nonlinear
interactive flow, as X increases, was that of an algebraic singularity arising at a finite
position, say as X — X, ; this option is, in fact, still possible for the corrected system
of interaction equations but with some changes in the details. The similarity forms they
proposed are appropriate, apart from that for the pressure. As X — X, , the behaviours

for the interaction quantities must have the forms:
. S - =B
1p11] ~ (Xo = X)7 6 P(7), 133 ~(Xo—X) 3W(j),
— = —— =]
g7 ~ (Xo — X)7'#(37), where 5 =Y(Xo—X)73. (3.9a — d)

When these forms are substituted into the interaction equations, the resulting similarity

equations can be solved and we deduce that we require the quantity
Keg, <0, (3.10)

for this option of finite-distance break-up to be a possible large-X state of the vortex—

wave interaction. Note the change of sign necessary for this option to be possible; this

change is due to the modifications found necessary by Smith & Blennerhassett (1992).
The next option that we consider is less ‘catastrophic’, as far as the laminar flow is

concerned, with the solution continuing to downstream infinity.
(i) Option II: Algebraic response at infinity.

This option is still also possible with the corrected equations. The flow quantities

must have the following forms

et

W(;i)a i’)’33? ~ ‘—XT;(;})) ;7 =Y Y (31]-“ - d)

)
Lot

1= . —
1P| ~ XEP(}), g3 ~X°

as X — oo.

It is easy to show, from the integro-differential equation (3.8), that we require

I\’Cgr >0 (312)

12



for this option to be possible; note that this is also a different result than Hall & Smith
(1989) found.

The third large-X option proposed by Hall & Smith (see also Smith & Walton, 1989)
is that of an exponential growth as X — oo. This option is no longer possible as it relies
on a forcing term in the w33—equation that is not present in the corrected equations. A
further option, mentioned by Hall & Smith, that is still feasible; is that of decoupling due
to linearisation. Here the TS pressure disturbance |f;1| becomes very small, and the vortex
flow then grows slowly on its own with downstream variable X from its initial upstream
state. However, this option is ultimately unstable to the TS-waves since the nonparallel-

growth term, proportional to Ay, will dominate the vortex skin friction 11337(—)_(—, 0).
3.3 The transonic and hypersonic limits.

There are three obvious limiting cases to consider for the value of the Mach num-
ber; below we consider the transonic and hypersonic limits, Mo — 1 and My, — o

respectively, whilst the incompressible case My, = 0 1s considered in the next section.
(i) The Mach number tending to unity.

In his study of the eigrenrelation (2.6a), Smith (1989) investigated various limiting
cases, including those of Mo, — 1 and M, — oo; Here the ‘transonic limit’ will be
considered; without loss of generality, we suppose that the flow is (just) supersonic and
define

M= (M2~ 1)}, (3.13)

so that m is small. Smith (1989) showed that, in this case, the TS—wave quantities behave
like
. _3 _3 _3
(o, 3,2) ~ (M~ Ta*, M~ I8 M~ 1Q%) + .. (3.14)

Substituting these into the formula for the interaction coefficients, we find that

(Cir car) ~ R (ch o ch) + oy el ~ O(1), (3.15)

13



so that the interaction scales XY, the vortex disturbances i ,,v, w33 and the TS- pressure

amplitude |p;;] also need to be scaled with

— 3—x . losx 3 7 13
(X,Y, g5, W33, [P ]) = (7?1§X*, ﬁzgY*,ﬁﬁ,ﬁ;g? ,MEW3, mT6 P *) +---. (3.16)

These scales and the resulting set of equations can be used to check numerical results, for
the general supersonic case, by providing a ‘transonic’ asymptote. We do not consider the
transonic limit any further here; Bowles (1990) has considered transonic boundary layer

transition but the author is unaware of any vortex-wave formulations for the transonic

regime.
(11) The large Mach number limit.

Another limiting case that Smith (1989) went on to investigate was the so-called
hypersonic limit when Mo, > 1; this limiting case leads to some interesting consequences
for the whole triple—deck structure. Thus it would be most instructive to consider the
same limit here, as our interaction structure is, of course, dependent to a very great extent
on the underlying triple-deck scales.

First, let us recap those results of Smith (1989) which are relevant here,rbérforre going on
to investigate the result of increasingly large Mach number on the interaction-coefficients,
equations and length-scales. For M > 1 the main features revolve around the small
regime

_3 1 . .
(a,8,Q) ~ (Moo? &, Moo B, M Q) + -+, (3.17)

where &, 3 and € are O(1). Since a,f and Q appear in the interaction coefficients (3.7),

it is necessary to rescale the coefficients as follows:
-3 o
(cir,€2r) = Moo? (17, 82r) + - -+, where &1,¢2 ~ O(1). (3.18a, b)
It also is necessary to rescale the quantities appearing in the interaction equations,

(X,Y, fiyy5,Wss, [Pul) = (M¥4X,Mio/4?,Mgo/%as?’Mi)/tt';?ss, M35, D).
(3.18¢ — g)

14



A set of interaction equations for this hypersonic-limiting case can be derived (Black-
aby, 1991). These appear exactly the same as the general interaction equations which
obscures the fact that the whole multi-layered boundary-layer structure is radically al-
tered as the Mach number increases. It was shown by Blackaby (1991), based on the theory
of Smith (1989), that as M, Re%, the triple-deck streamwise length—-scale, Re_%K]X,
rises to become O(1) in size; implying that a normal-mode decomposition is no longer
rational because the nonparallelism of the underlying, growing boundary-layer is now a
leading-order effect. Further, in this limit it was shown that the lower—deck thickens to
coalesce with the main-deck.

This collapse of the iinderlying compressible-triple-deck structure, as the Mach num-
ber increases, will obviously occur for the large Mach number behaviour of the vortex-wave
interaction being considered. However the large Mach number destiny of buffer-layer (in
particular, its thickness) and the amplitude-modulation scale remain to be established.
Intuitively, as the buffer-region is ‘sandwiched’ between the lower— and main-decks which
merge into a single viscous layer in this limit, we would also expect the buffer-region to
collapse into the same viscous layer. Similarly, as the modulation—scale is ‘sandwiched’
between the triple-deck’s streamwise length-scale (which emerges as O(1) in this Mach
number limit) and the O(1)-length-scale of the underlying flow, we would expect that the
modulation-scale also lengthens to that of the underlying base flow (as M / Re%). We
now show that these suspicions are correct, by formally considering the large Mach number
properties of the scales involved.

Recall that, in the streamwise direction, we have the multiple scales,
3
8y — O, + 6585 + Re8 K[ '0x;

necessary to capture the vortex-wave interaction. The quantities K; and é; are as defined

by (2.1c) and (2.11c), respectively. In the large Mach number limit, we have seen that

_3 _3
Ox ~ Mt whilst Ox ~ o ~ M2,
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so that the unscaled length—scales, L,, and L, say, of the TS-waves and the modulation

of the induced vortices, respectively, are
3 3 3
Lw~Re 8KiMZ <1 and L, ~6ME <« 1.
The Sutherland temperature-viscosity relation leads to,
Ky~ MZE, (3.19a)

and so

3 27 1
L,~Re 8MS, /7 O(1), as Mo / Re?.
As far as the amplitude-modulation scale is concerned, we find that

L, ~6;ME ~ R KEMA ~ ReTsMEF 2 0(1), a5 M,/ ReE. (3.100)
Thus, as predicted earlier, this modulation scale does indeed rise to O(1)-size in this limit
of the Macil number.

Nrow,v let us consider the buﬁ‘ér-region; it lies at the top of the lower—deck, where
the lower—déck normal-variable Y = §Y and § is defined by (2.11d). For large Mach
numbers, we hévé found, (3.18d), that the buffer-region is characterised by the location

- -1_
where Y = Moo?Y ~ O(1). Thus the buffer-region lies where
1 1 L 1 1 -1
Y ~ §ME ~ ReT6 K, ° ML ~ Re16 M, 18
1 )
— O(ReT8) ~ O(MZ), as My, / ReS. (3.20)

Note that for large Mach number, the lower-deck variable, Y, also scales on M; in fact
Y ~ Mo%o — hence from this and (3.20) we deduce that the buffer-layer merges with the
lower-deck, which in turn coalesces with the main—deck. Thus the three sub-boundary-
layers, present for M., ~ O(1), have all merged into one single viscous layer.
Summarising, when M, — Re% the four-layered, short—scaled structure underlying
the vortex-wave interaction collapses into the two-tiered, long structure found by Smith

(1989) and considered by Blackaby (1991).
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4 RESULTS AND DISCUSSION.

This study was motivated by the desire to find out what changes to the theory, pre-
dictions and conclusions of the original work by Hall & Smith, are brought about by the
inclusion of compressibility—effects. However, ironically, the changes brought about by the
correction of the former turn out to be more significant. For this reason, and for later
comparison, the new results for incompressible flow will also be presented in §4.2. In the
following subsection, we show how the interaction equations can be ‘normalised’ so that
their solution depends merely on initial conditions imposed and the sign of Kc¢z,. Numer-
ical solutions of the normalised interaction equations are presented for both choices of the

sign of Kcy,.
4.1 The interaction equations renormalised.

In §3.2 we considered possible limiting—forms, for solutions to the interaction equa-
tions as X — oo, and found that the sign of the quantity Kcs, was crucial in deciding
whether particular limiting forms were, in fact, possible. This suggests that the interaction
equations, (3.2,3.4), can be renormalised. This being desirable, we investigated further and

found this was, indeed, the case.

Writing
X = Iclr/\bl_%X*, Y = lc1rz\bl_?]>'Y*, Wy = —ifK|cs| 7T W,

- 1 “ _1 -
IP11] = |es| 2 P* and u337=—ﬂ2K|c1,Ab| 3 |es] Trr (4.1a —¢)

where

5
c3 = —KCz,-ﬂz/lc“-)\bl?, (42)

leads to the normalised system
W‘*/‘Yt b Y*W;’a = 0, T;"Y; - Y*T;(a = W*

and Px. + [sgn(cirA)X ™ — sgn(Kear)7*(X*,0)] P* =0, (4.3a — ¢)
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which must be solved subject to initial conditions (at X* = 0), together with the boundary

conditions
W*(X* 00) = 7%(X*,00) = 7¢.(X*,0) =0 and W*(X*,0) = P*(X*). (4.3d—g)

Thus, the interaction equations (and hence their solutions) ai‘e dependent only on the
initial conditions imposed; sgn(ci,As) and sgn(Kcar). In all the numerical calculations
carried out, it was found that ¢;r > 0, whilst Ay <0 for a growing ‘Blasius—similarity—
variable— type boundary layer — appropriate to the present study, if we assume that there
is no sxgmﬁcant wall—cooling or preqsure -gradient effects. We therefore set sgn(eirdp) = —1
and, apart from consistent initial conditions, the only parameter remaining is sgn(K CZ’”,)'
Thus, with hindsight, it is not surprising that the (predicted) solution properties for, large-
X, depend crucially on the value of sgn(K car). Recall that earlier, in §3.2, we noted the

following predictions:

e {70 e e bestoa, e % — X7 “)
for the behaviour of the solutions to the interaction equations.

To check these predictions, the normalised system, (4.3), was solved numerically; for
both possible values of sgn(Kcs,), and for different (consistent) initial conditions. The
large-X (X* > 1) properties of the solutions were found to depend solely on sgn(Kczr);
the initial conditions were found to affect only the initial development of the imposed
disturbances. The equations were solved by taking ‘central differences’ in ¥'* and ‘forward
differences’ in X* (following the method of Hall & Smith, 1989); the appropriate numerical
checks were performed.

In Figures 2a,b, we present typical results for both values of sgn(Kcar). In both of
these computations the system was initialised at X* = —1 (upstream of the neutral TS
point) using

P*=P;, W*=P*(1+ Y*%)exp[-Y*?], 7 = (1 - PT Y*%) exp[-Y*?], (4.5a —c)
with Py = 0.1. Note that this initial state, which is consistent with the interaction

equations plus boundary conditions, corresponds to a ‘mixed’ wave/vortex state. Moreover,
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we see from the ‘forcing’ boundary condition (eg. (4.3g)) that admissible initial states
cannot consist of just TS waves alone; the longitudinal vortices must initially be present.
It appears to the author that the initial states used by Hall & Smith (1989) (see their section
5; particularly figures 2-5) are inconsistent with their system of interaction-equations plus
boundary conditions; they do not appear to satisfy the boundary conditions. In their
study of vortex/wave interactions, Smith & Walton (1989) do not comment on the initial
conditions they choose.

Returning to Figures 2a,b, we see that these numerical results are in full agreement
with the theoretical large-X* predictions, (4.4). Thus, in the following subsections, it
is sufficient to merely calculate values of sgn(Kcy,) in order to determine the solution

properties for large-X*; these being of principal interest.
4.2 The incompressible case (M, = 0).

In their study, Hall & Smith (1989) considered ‘this’ vortex-wave interaction for in-
compressible boundary-layer flow. They cleverly deduced the scales and formulated the
iteraction; unfortunately, they made two unrelated errors in their analysis, both of which
have a significant effect on the results and conclusions. The first of these errors concerning
the missing logarithmic term in the interaction scales (most kindly pointed out to the
current author by Dr. P. Blennerhassett and Prof. F.T. Smith), leads to a simpler system
of interaction—equations, as well as leading to changes in the possible large-X states and
the necessary parameter values for them to be possible. The second, the term w(V\;zY
missing from the left-hand side of Hall & Smith’s (1989) equation (3.9b), was spotted by
the current author and leads to a corrected form for ¢, and hence, a corrected value for
the crucial quantity cs,.

The interaction coefficients a, b, are as given by Hall & Smith (1989); whilst the
corrected form for ¢ was given by Blackaby (1991) (see also the Appendix A of Smith &
Blennerhassett, 1992). In Figure 3 the new numerical values for the important interaction

quantities, c¢;, and c;, are plotted, versus TS-wave obliqueness angle 6; recall that, for
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incompressible flow, all such wave angles are possible. Note that ¢;r > 0 for all 8; whilst

¢y, has one zero, at 8 ~ 32.21°. Recalling the definition of K,

>0 :if 6 <45°
<0 : otherwise,

K =1-(8%/4a®) = 1 - tan’(0) {

we see that, when M =0, .

Sgn'(Kczr) _ { -1 :if32.21° < 6<45°

+1 : otherwise.

Thus, from this last result and the numerical calculations described in §4.1, we deduce
the following: (i) if 32.21° < 6 < 45° then the solution to the interaction equations will
‘blow—up’ in a finite-distance; otherwise (ii) the solutions will grow slowly (far slower than
the linear TS—solutions if there were no vortices present), with amplitudes proportional to
algebraic powers of X*, as X* — oo. Note that these conclusions are quite different from
those of Hall & Smith (who concluded that the ‘finite-distance break-up’ option was most
likely, apart from the small range 45° < 6 <~ 50° where an ‘exponential-growth’ option
was favoured). Thus, the theoretically-exciting ‘inite-distance break-up’ option is now

the exception, rather than the rule.
4.3 The subsonic, supersonic and hypersonic cases.

For subsonic (Mo < 1) and some supersonic (1 < M <~ 1.15) flows, the properties
of the interaction—cdefﬁcien'ﬁs were remarkably similar to those found for the incompress-
ible case i.e. graphs of cir,c2, against § appear very similar to Figure 3. However, the
TS-wave angle restriction (2.7b) is found to have a far more significant effect for ‘more’
supersonic flows — essentially it can be regarded as preventing wave-angles thatrwould
allow sgn(Kcz,) < 0, corresponding to the finite—distance break-up option. This is illus-
trated more clearly in Figure 4 where the results are summarised; we see that the 8 — M
plane splits into four regions (labelled I - IV, as shown). Reéion IV corresponds to the
‘barred’ area, where no neutral TS-modes are possible. We see how the border of this
region acts as an ‘abrupt cut-off’ to the larger-Mo extent of Region II ( finite-distance

break-up option). This is so much so that, for Mach numbers above v/2, the possibility
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of finite-distance break—up has gone. Thus summarising, in the subsonic case the results
are almost identical to the incompressible case; whereas, in general, the finite-distance
break-up eventuality is not possible for supersonic flows, mainly due to the severe cut-off
restriction for large Reynolds numbers. To illustrate the last point, in Figure 5 we have
plotted cz, versus 3 and 6 for Mo, = 3 — note (1) that there is no zero for cz,, and (ii),
the very oblique wave-angles encountered (so that K 1s always negative and, hence, K¢y,
is always positive).

The last set of results that we present are for hypersonic flow over a wedge, as consid-
ered by Cowley & Hall (1990), in which a shock is fitted into the upper-deck (at ¥ = 7,,
where ¥ is the normal-variable of the upper-deck), leading to a modified form of Smith’s
hypersonic TS-eigenrelation (the reader is referred to the paper by Cowley & Hall for all
details of the formulation). In Figure 6, we present results for the first (lowest) neutral-
curve for the case §, = 1; here acy, fcu ~ O(1) correspond to a,3 in the notation of

that paper. It is sufficient to note that, in our notation,

LN V<. SN
2 acHy

and so the waves they consider are, in general, very oblique. Of particular interest here is
the (small) interval where cér > 0, so that Kca, < 0, corresponding to the finite-distance
break—up option; this is an effect of the shock. No such interval is found for the ‘higher’
neutral curves; this interval appears to be a feature of the ‘lowest’ neutral curves only (for
each choice of 7,) and corresponds to ‘crossing’ the ‘divide’ acy = Bcn.

Finally, we report that for the ‘hypersonic and transonic’ limiting cases mentioned in
§3.3, the numerical results and the predicted asymptotic behaviours (for the interaction

coefficients) were in extremely good agreement.
5 CONCLUSIONS

Many of the conclusions of Hall & Smith (1985) carry over to the present study
and so we concentrate on compressibility-related aspects here. In this paper it has
been demonstrated that, within the triple-deck framework (Re > 1), pairs of small-

amplitude Tollmien—Schlichting waves and longitudinal vortices can interact, leading to
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mutual growth. We have seen that two possible ‘eventualities’, for the downstream evolu-
tion of the interaction, exist; one in which the solutions grow relatively slowly as X — oo;
whilst the other terminates at a finite-distance in a ‘break—up’. Further, we have seen that
the latter is no longer possible, in general, for supersonic flows (Re > 1).

The interaction has been considered for all ranges of the Mach number; corrected
results for the incompressible case have been presented and the main effect of compress-
ibility is through its impact on the TS waves via their governing mechanism, the triple-deck
structure. In thé transonic and hypersonic limiting—cases the interaction modulation scale
X must be rescaled; in the transonic limit this modulation scale shortens, whilst in the
hypersonic limit the opposite is true. The investigation of such vortex/wave interactions in
transonic and hypersonic flows (not their ‘limits’) should prove interesting; note that the
former flow has been studied by Bowles (1990), whereas the latter flow regime has been
considered by Blackaby (1991).

Other effects which could be incorporated into the present theory include pressure-
gradient effects; wall-cooling effects (see Seddougui, Bowles & Smith, 1991); cylindrical
geometry (see Duck & Hall, 1990) and spanwise-modulation (cf Smith & Walton, 1989).
Finally, we note that Hall & Smith (1991) and Walton & Smith (1992) consider the pro-
porties of ‘strongly nonlinear’ TS—wave/vortex interactions corresponding to larger wave

amplitudes than those considered in this paper.
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Figure 1. TS wave obliqueness angles 6 versus scaled spanwise wavenumber for neutral

modes.
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Figure 2a.

20
)
|
]
]
15k P*Zﬂl
f
|
|
I
10+ !
!
|
]
!
5F /
!
/
/
/

O _ e
—5} T*(O)S
_10 | { i | 1 1 [ | J

—-1.0 0.0 1.0 2.0 3.0

X*

Figure 2a. Numerical solution of the interaction equations (4.3) with Key, < 0.
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Figure 2b.

Figure 2b. Numerical solution rof the interaction equati?oxrisr (43) with K¢ > 0.
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Figure 3.

Figure 3. The interaction coefficients, ¢, and cs,, versus TS wave angle 6 for the incom-

pressible case.
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Figure 4.
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Figure 5.
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Figure 5. The wavenumber 8/2 and the interaction coefficient c2r, versus TS wave angle

0, for Mo, = 3.
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Figure 6. The quantities acy and cgr, versus Bcn, for hypersonic flow over a wedge:

7, = 1, lowest neutral curve (the lower curve in figure 2a of Cowley & Hall, 1990).
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